Simulation of Offset Reflector Antennas using NEC2++ A Consideration on Size of Surface-patch Yoshiyuki Takeyasu / JA6XKQ

NEC2++ を用いたオフセット型反射アンテナのシミュレーション サーフェス・パッチのサイズについての考察 武安義幸 / JA6XKQ

OpenSCAD を用いてオフセット型反射アンテナのモデルを作成し、NEC2++ でその特性を シミュレーションした。[1] 課題であったモデルの Surface Patch のサイズについて考察 する。

はじめに

OpenSCAD を用いてオフセット型反射アンテナのモデルを作成し、NEC2++ でその特性を シミュレーションした。[1] コンピュータに搭載したメモリ容量の制限のために、モデルの Surface Patch を十分に細かくすることができなかった。 NEC2++ で Surface Patch を用 いたシミュレーションでは、その結果が Surface Patch のサイズに依存することを経験して きた [2] [3] ので、先のシミュレーション結果についても Surface Patch に関わるモデルの 有効性を確認することが課題として残っていた。

CPU とメモリ容量のアップグレードを図り、これまでよりも更に大規模なモデルのシミュレーションが可能となったので、オフセット型反射アンテナのシミュレーションでの Surface Patch のサイズについて考察する。

オフセット型反射アンテナの設計パラメータ

カセグレン型とグレゴリアン型の設計パラメータを **表-1** にまとめる。 設計パラメータの定 義と数値は先のシミュレーション [1] と同じである。

シミュレーション・モデル

フィード・ホーン・アンテナには "3 セクション・コニカル・ホーン" [2] を用い、そのモデルは

GNU Octave で記述した自前のプログラムにより Surface Patch で構成する。 また、 サ ブ・リフレクタとメイン・リフレクタは OpenSCAD [4] により、同様に Surface Patch で構成 する。

先のシミュレーションでの構成要素を **表-2** にまとめる。 Surface Patch のサイズは 1/5 (0.2)以下であることがモデル生成の指針であるが [5]、**表-2** ではメイン・リフレク タがその指針を満足していない。 そこで今回は、メイン・リフレクタの Surface Patch のサ イズをより小さくしてシミュレーションを行う。

CPU を 12 コアから 24 コアへ、メモリ容量を 144 GB から 384 GB へアップグレードを図ったが、100 のメイン・リフレクタを 0.2 刻みの Surface Patch で構成すると 384 GB のメモリでは計算できない。 そこで、384 GB のメモリ容量に収まる範囲で、できるだけ細

Parameter	Cassegrain	Gregorian	
D	100	100	
dc	10	10	
Vs	15	15	
do	79.41	58.70	
	-1	+1	
L	95	95	
F	107.25	82.84	
	10.11 deg	5.44 deg	
0	40.63 deg	39.02 deg	
e	2.52	0.49	
	23.15 deg	-15.87 deg	
U	62.21 deg	66.54 deg	
L	15.62 deg	6.01 deg	
с	16.86	13.39	
е	11.89 deg	11.95 deg	
a	6.69	27.25	
b	15.48	30.37	

表-1:オフセット型反射アンテナの設計パラメータ

かい Surface Patch となるようにモデルを生成した。 今回試したシミュレーション・モデル の構成要素を 表-3 にまとめる。 表-2 と 表-3 において数値に若干の差異があるが、 表-2 では丸めた数値を用いたことが理由である。

シミュレーション結果

NEC2++ でのシミュレーション結果のうち指向特性を、図-1 ~ 図-6 に示す。シミュレーションの周波数は 10.45 GHz である。

シミュレーションに要した最大のメモリは Cassegrain の Case-3 で約 345 GB で、その計 算時間は約 4 時間 57 分であった。

考察

メイン・リフレクタを構成する Surface Patch のサイズを変えてシミュレーションを行った。

ゲインの変化を、**表-4** にまとめる。 オフセット・カセグレンでのゲイン変化は 0.01 dB、オフセット・グレゴリアンでは 0.06 dB である。 いずれにおいても、メイン・リフレクタを構成 する Surface Patch のサイズ変化に対する依存性は小さい。

一方、 図-1 ~ 図-6 に示す指向特性においては H 面のサイドローブの変化が著	しく、	30
--	-----	----

Sub System	Surface Patch	Cassegrain	Gregorian	
Feed Horn	Shape	Quadrilateral	Quadrilateral	
	Size	0.2	0.2	
	Number	5,000	5,000	
Sub Reflector	Shape	Triangular	Triangular	
	Size	0.13	0.18	
	Number	15,400	12,600	
Main Reflec-	Shape	Triangular	Triangular	
tor	Size	0.82	0.79	
	Number	22,900	24,600	

表-2 : シミュレーション・モデル(前回)の構成要素

dB 以上の変化に及ぶ部分もある。 サイドローブの変化は大きいが、メインローブの変化 は小さい。 カセグレンとグレゴリアンのいずれにおいても、Theta = -60 ~ -180 deg. の 領域でサイドローブの変化が大きい。

メイン・リフレクタの Surface Patch のサイズに対して変化が著しい Theta = -60 ~ -180 deg. のサイドローブの発生理由は何であろうか? 解析のために、サブ・リフレクタからの ラジエーションの様子をプロットする。 オフセット・カセグレンのサブ・リフレクタからのラジ エーションを、**図-7** に極座標で、**図-8** に直交座標で示す。

図-7 において約 +35 度の方向にある輻射はサブ・リフレクタから後方へ回折/散乱するものであり、約 +140 度の方向にある輻射はサブ・リフレクタからメイン・リフレクタへ反射されたものである。 極座標の **図-7** と直交座標の **図-8** を対比させつつ、サブ・リフレクタ の **図-8** とメイン・リフレクタの **図-1** を比較すると、サブ・リフレクタからの 約 +140 度の輻射がメイン・リフレクタで反射されてメインローブを形成していること、また、約 +35 度のサブ・リフレクタ越しの輻射が残っていることが解る。一方、-60 度から -180 度のサイドローブはメイン・リフレクタで生成されていると判断される。

それでは、メイン・リフレクタに対して -60 度から -180 度へ輻射するメカニズムは何であ ろうか? 図-9 に示すオフセット・カセグレンの配置図に -60 度の定規を当てて関係しそ うな位置を探してみると、メイン・リフレクタのエッジからサブ・リフレクタが -62 度から -66 度の範囲に位置することが解る。 図-1 の約 -70 度近辺のサイドローブは、メイン・リフレ

Sub System	Surface	Cassegrain			Gregorian			
	Patch	Case-1	Case-2	Case-3	Case-1	Case-2	Case-3	
Feed Horn	Shape	Quadrilateral			Quadrilateral			
	Size	0.2			0.2			
	Number	5,000			5,000			
Sub Reflector	Shape	Triangular			Triangular			
	Size	0.14			0.19			
	Number	15,496			12,624			
Main Reflector	Shape	Triangular		Triangular				
	Size	0.85	0.68	0.57	0.82	0.66	0.60	
	Number	22,931	36,063	50,557	24,604	37,573	45,929	

表-3: シミュレーション・モデル(今回)の構成要素

クタのエッジ近辺からの輻射がサブ・リフレクタ越しに回折/散乱しているものと考えられ る。さらに 図-9 においてメイン・リフレクタのエッジ近辺からの輻射がサブ・リフレクタで 反射する様子をトレースすると、約 -120 度から後方へ輻射が生じることが解る。 同様の トレースを考えると、サブ・リフレクタでの反射がフィード・ホーンで回折/散乱する可能性も ある。 サブ・リフレクタとフィード・ホーンの位置関係は約 -150 度であり、図-1 の当該部 分のラジエーション・パターンのリップルがフィード・ホーンでの回折/散乱に相当するので はないかと考えられる。

上記の考察は、メイン・リフレクタのエッジ近辺からの輻射を想定したものである。メイン・ リフレクタの Surface Patch のサイズを変えると、その輻射に起因したサイドローブの発生 量が変化するということは、メイン・リフレクタのエッジ近辺からの輻射を正しくシミュレー ションできていないことを意味している。

NEC2++ での Surface Patch の使用は、本来、閉じた面に限定される [5] ところを開放端 のある反射板に適用しているので、シミュレーションでの近似精度の確認が必須である。 これまでのフィード・ホーンのシミュレーション [2]、サブ・リフレクタと組み合わせた対称型 カセグレン・アンテナのシミュレーション [3] においては、Surface Patch のサイズと計算結 果の検証を行ってきた。ホーン・アンテナでは開放端である開口面の Surface Patch の サイズを、また、サブ・リフレクタでも反射板のエッジでの Surface Patch のサイズを、目安 の 0.2 よりも可能な限り小さいサイズとして近似精度を確保してきた。なお、開放端の ある反射板への Surface Patch の適用については、文献 [6] が参考となる。

反射板のエッジでは Surface Patch の境界条件が、本来は連続であるべきところ、不連続となっているため近似が破綻する。 Surface Patch のサイズを小さくすることで、「穏やかな破綻」が得られるのだろう。

まとめ

今回のメイン・リフレクタの Surface Patch のサイズは目安である 0.2 よりも大きなもの ではあるが、Surface Patch のサイズと近似精度の傾向を把握することができた。 ゲイ ンの評価だけであれば、現状の Surface Patch のサイズでも良いかもしれない。 しかし、 全体のラジエーション・パターンに依存する G/T の評価や、サブ・リフレクタとフィード・ ホーンによる回折/散乱を評価する際には、Surface Patch のサイズの上限を見極めるこ とが重要であろう。 しかし、MoM (Method of Moment) である NEC2++ を用いて Surface Patch を単純に小さくすることで近似精度を上げるには、計算機リソースとのイタチ ごっこで際限が無い。 計算機リソースとシミュレーションの近似精度のバランスについて は多くの研究が発表されているので、先達の成果をトレースしてみたい。

17

[1] 武安義幸, JA6XKQ, "NEC2++ を用いたオフセット型反射アンテナのシミュレーション," 2016.

http://www.terra.dti.ne.jp/~takeyasu/Offset_Cas_Greg_1.pdf

[2] 武安義幸, JA6XKQ, "NEC2++ によるホーン・アンテナのシミュレーション," 2011. http://www.terra.dti.ne.jp/~takeyasu/Nec2pp3SecHorn.pdf

[3] 武安義幸, JA6XKQ, "NEC2++ を用いたカセグレン・アンテナのシミュレーション," 2015. http://www.terra.dti.ne.jp/~takeyasu/Nec2ppMainRef 1.pdf

[4] 武安義幸, JA6XKQ, "OpenSCAD によるNEC2 モデル生成," 2016. http://www.terra.dti.ne.jp/~takeyasu/OpenScad_Nec2_2.pdf

[5] Burke, B. J., and Poggio, A. J., "NUMERICAL ELECTROMAGNETICS CODE (NEC) METHOD OF MEMENTS, PART III: USER'S GUIDE," 1981.

[6] L. B. Cebik, W4RNL, "Planar Reflectors: Wire Grid vs. SM Patches." *https://www.antennex.com/w4rnl/col0406/amod98.html*

図-1 : オフセット型カセグレン・アンテナの輻射パターン (Case-1: 0.85

図-2 : オフセット型カセグレン・アンテナの輻射パターン (Case-2:0.68)

図-3: オフセット型カセグレン・アンテナの輻射パターン (Case-3: 0.57

図-4 : オフセット型グレゴリアン・アンテナの輻射パターン (Case-1: 0.85)

(C) 2016, Yoshiyuki Takeyasu / JA6XKQ

図-5 : オフセット型グレゴリアン・アンテナの輻射パターン (Case-2:0.66

	Cassegrain			Gregorian			
	Case-1	Case-2	Case-3	Case-1	Case-2	Case-3	
Gain (dBi)	48.73	48.74	48.74	48.14	48.08	48.08	

表-4: ゲインの変化

