Simulation of Offset Reflector Antennas using NEC2++ A Consideration on Size of Surface-patch #2 Yoshiyuki Takeyasu / JA6XKQ

NEC2++ を用いたオフセット型反射アンテナのシミュレーション サーフェス・パッチのサイズについての考察 #2 武安義幸 / JA6XKQ

NEC2++ を用いたオフセット型反射アンテナのシミュレーションにおいて,モデルの Surface Patch のサイズがシミュレーション結果に与える影響を考察した[1]. しかし,コ ンピュータ・リソースの制約から, Surface Patch のサイズを見極めることができなかっ た. 今般,コンピュータ・リソースを拡張し,シミュレーションに必要とする Surface Patch のサイズを見極めることができた.

はじめに

NEC2++ で Surface Patch を用いたシミュレーションでは、その結果が Surface Patch の サイズに依存することを経験してきた [2] [3] . Surface Patch のサイズを小さくすれば結 果のラジエーション・パターンに生じる不可解な特性が減少することは判明している. Surface Patch のサイズを小さくする、すなわち、シミュレーション・モデルの規模を大きくす るにはコンピュータ・リソースの CPU 処理能力とメモリ容量の増強が必要となる. 前回 [1] は 384 GB の RAM メモリ容量が制約となり、Surface Patch のサイズを見極めること ができなかった.

2016 年の前回 [1] に用いたコンピュータ・リソースは 2025 年の現在では甚だ旧式である が,処理能力的にまだ使用に耐えるものであり,旧式という観点から RAM メモリ・モジュー ルを安価に準備することが可能となった.そこで,RAM メモリ容量を最大搭載容量である 768 GB まで増強して Surface Patch サイズを見極める.

オフセット型反射アンテナの設計パラメータ

カセグレン型とグレゴリアン型の設計パラメータを **表-1** にまとめる. これらの設計パラメ ータの定義と数値は先のシミュレーション [1] [4] と同じである.

シミュレーション・モデル

フィード・ホーン・アンテナには3セクション・コニカル・ホーン [5] を用い,モデルは[5] に 示す手法にて Surface Patch で構成する. サブ・リフレクタとメイン・リフレクタは Open-SCAD を用いる手法 [6] にて同様に Surface Patch で構成する.

シミュレーション・モデルの構成要素を 表-2 にまとめる.フィード・ホーンとサブ・リフレク タの Surface Patch サイズは前回同様 [1] にモデル生成指針 [7] の 0.2 以下とする. 一方,メイン・リフレクタの Surface Patch サイズは 768 GB の RAM メモリ容量に収まる 範囲で,できるだけ細かくなるようにモデルを生成する. 表-2 の Case-3 は前回 [1] の モデルであり,今回のモデルCase-4 と Case-5 は前回からの連番としている.

Parameter	Cassegrain	Gregorian	
D	100	100	
dc	10	10	
Vs	15	15	
do	79.41	58.70	
	-1	+1	
L	95	95	
F	107.25	82.84	
	10.11 deg	5.44 deg	
0	40.63 deg	39.02 deg	
e	2.52	0.49	
	23.15 deg	-15.87 deg	
U	62.21 deg	66.54 deg	
L	15.62 deg	6.01 deg	
с	16.86	13.39	
е	11.89 deg	11.95 deg	
а	6.69	27.25	
b	15.48	30.37	

表-1 : オフセット型反射アンテナの設計パラメータ

Surface Patch サイズの決定はオフセット・カセグレン型において 0.49 を試して RAM メ モリの消費量を把握し,0.45 であれば 768 GB に対して若干の余裕をもってシミュレー ションを実行可能と判断した.オフセット・グレゴリアン型については,オフセット・カセグレ ン型に倣って 0.45 のみのシミュレーションとした.

シミュレーション結果

オフセット・カセグレン型のシミュレーション結果を 図-2 および 図-3 に,オフセット・グレゴ リアン型の結果を図-5 に示す. なお,図-1 および図-4 には,比較のために前回[1] Case-3 の結果を示す. また,ゲイン特性を表-3 にまとめる.

シミュレーションに要した最大の RAM メモリ消費量はオフセット・カセグレン型の **Case-5** において約 686 GB で,その計算時間は Intel Xeon E5-2670 v3 (12 core @ 2.3 GHz) × 2 CPU により約 15 時間 54 分であった.

Sub System	Surface	Cassegrain		Gregorian		
	Patch	Case-3	Case-4	Case-5	Case-3	Case-4
Feed Horn	Shape	Quadrilateral			Quadrilateral	
	Size	0.2		0.2		
	Number	5,000		5,000		
Sub Reflector	Shape	Triangular		Triangular		
	Size	0.14		0.19		
	Number	15,496		12,624		
Main Reflector	Shape	Triangular		Triangular		
	Size	0.57	0.49	0.45	0.66	0.45
	Number	55,553	72,490	85,757	50,897	85,866

表-2 : シミュレーション・モデルの構成要素

表-3のゲイン特性に示すように, Surface Patch のサイズをより細かくした今回のケースにおいて,有意なゲインの変化は認められない. NEC2++ でのゲイン算出は輻射パターンを基にしており,算出に支配的であるメイン・ローブのパターンが Surface Patch サイズでほとんど変化していないことに起因すると考えられる.

一方,図-1~図-5に示すように,Theta角度-150°~-60°の輻射パターンに大きな変化が認められる. Surface Patchのサイズが0.49 以下の今回のケースでは,当該領域での輻射がほぼ無くなっている. 前回考察したように[1], Surface Patch サイズに依存するためにメイン・リフレクタのエッジ近辺からの輻射を正しくシミュレーションできていなかった事象,すなわち「偽像」が,Surface Patch サイズを十分に細かくしたことで解消されたと理解する.

まとめ

2016 年のシミュレーション [1] にて、「NEC2++ を用いて Surface Patch を単純に小さくす ることで近似精度を上げるには、計算機リソースとのイタチごっこで際限が無い」と結論づ けた.当時は「際限が無い」と考えた領域に時代遅れな「巨艦大砲」で挑み、シミュレーショ ンに必要とする Surface Patch のサイズを見極めることができた.シミュレーション・ツー ルの課題を解消できたので、シミュレーションの所期の目的である「サブ・リフレクタの反射 効率と遮蔽損失のせめぎあいの検証」や「"水口の条件"と交差偏波の発生具合」等の課 題に戻らねばならない.

	C	assegrai	Gregorian		
	Case-3	Case-4	Case-5	Case-3	Case-4
Gain (dBi)	48.74	48.74	48.74	48.08	48.08

表-3 : ゲイン特性

参考文献

[1] 武安義幸, JA6XKQ, "NEC2++ を用いたオフセット型反射アンテナのシミュレーション サーフェス・パッチのサイズについての考察," 2016. http://www.terra.dti.ne.jp/~takeyasu/Offset Cas Greg NoOfPatch 1.pdf

[2] 武安義幸, JA6XKQ, "NEC2++ によるホーン・アンテナのシミュレーション," 2011. http://www.terra.dti.ne.jp/~takeyasu/Nec2pp3SecHorn.pdf

[3] 武安義幸, JA6XKQ, "NEC2++ を用いたカセグレン·アンテナのシミュレーション," 2015.

http://www.terra.dti.ne.jp/~takeyasu/Nec2ppMainRef_1.pdf

[4] 武安義幸, JA6XKQ, "NEC2++ を用いたオフセット型反射アンテナのシミュレーション," 2016.

http://www.terra.dti.ne.jp/~takeyasu/Offset_Cas_Greg_1.pdf

[5] 武安義幸, JA6XKQ, "NEC2++ によるホーン・アンテナのシミュレーション," 2011. http://www.terra.dti.ne.jp/~takeyasu/Nec2pp3SecHorn.pdf

[6] 武安義幸, JA6XKQ, "OpenSCAD によるNEC2 モデル生成," 2016. http://www.terra.dti.ne.jp/~takeyasu/OpenScad_Nec2_2.pdf

[7] Burke, B. J., and Poggio, A. J., "NUMERICAL ELECTROMAGNETICS CODE (NEC9 METHOD OF MEMENTS, PART III: USER S GUIDE," 1981.

追記 (第三版) - 他のシミュレーション方式との比較検証

本稿の"まとめ"にて「シミュレーションに必要とする Surface Patch のサイズを見極める ことができた」と結論付けたが、それは早計である.他のシミュレーション方式による先 例との比較検証無しには、本稿での結果の正当性を論ずることはできない.一連のシ ミュレーションにおいてオフセット型反射アンテナの参考とした文献 [8] に掲載されている 設計事例を本稿でのシミュレーション手法でトレースし、参考文献の結果と比較検証した い.

[8] Zaw, Zaw Oo, E-P. Li, and L-W. Li. "Analysis and design on aperture antenna systems with large electrical size using multilevel fast multipole method." Journal of electromagnetic waves and applications 19.11 (2005): 1485-1500.

http://ie-uestc.org/lwli/Publications/Journals/J-240.pdf

図-1 : オフセット・カセグレン型の輻射パターン (Case-3:0.57

図-2: オフセット・カセグレン型の輻射パターン (Case-4:0.49)

)

)

図-5 : オフセット・グレゴリアン型の輻射パターン (Case-4:0.45

図-3:オフセット・カセグレン型の輻射パターン(Case-5:0.45)